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LElTER TO THE EDITOR 

Recursion equations for static and kinetic models of branched 
polymers 

A Maritant and A L Stella4 
Dipartimento di Fisica dell’Universitii di Padova, Padova, Italy and International School 
for Advanced Studies, Trieste, Italy. 

Received 18 September 1984 

Abstract. A new renormalisation group treatment of bond lattice animals is presented 
which yields the critical bond fugacity and Y exponent for general dimension d. Good 
agreement is obtained with predictions based on different methods for all d. In particular 
U = 1 - E  +O(E* ) ,  for d = 1 + E. Results are also given for a kinetic version of the bond 
lattice animal problem. 

In recent years, cluster renormalisation group methods in real space have been exten- 
sively applied to geometrical critical phenomena (Stanley et a1 1982). In spite of their 
very intuitive basis and apparent simplicity, these methods suffer rather severe 
limitations, as far as their range of applicability is concerned. The existing methods 
for obtaining recursion equations soon become untractable for large cell size (rescaling 
factor I )  and/or space dimension, d because of the difficult enumeration problems. 

In particular, for the problem of bond lattice animals, which is related to the 
conformational statistics of branched polymers in solution (Flory 1969, Stanley et a1 
1982) there exist, up to now, very limited renormalisation group results for the d = 2 
case (Family 1980). 

The situation is somewhat disappointing if one considers the much wider range of 
results provided e.g. by the simple and powerful Flory approximation (Isaacson and 
Lubensky 1980). More flexible renormalisation group methods would also be very 
welcome in the context of further applications to the kinetics of random branched 
aggregates formed by some irreversible process. Models of these processes are the 
dynamical counterpart of the static animals and are relevant for the description of 
several physical and biological situations, such as the coagulation of smoke particles 
(Witten and Sander 1981) or the growth of tumors (Eden 1961). 

In this Letter, following previous analogous developments for self-avoiding random 
walks (linear polymers) and self-avoiding random surfaces (sheet polymers) (Maritan 
and Stella 1984a, b), we propose a new version of the cluster renormalisation for bond 
lattice animals, which yields recursions in closed form for all values of d and 1. 

When considering random animals on a d-dimensional hypercubic lattice, one is 
interested in the number of connected clusters of n nearest-neighbour bonds per site, 
c,, and on their mean square radius of gyration with respect to the centre of mass, R ; .  

t Also at INFN Padova, Italy. 
$ Also at Unitii GNSM del CNR, Padova, Italy. 
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One expects that asymptotically, for n + CO, 

and 
R t  a n2”. 

It is convenient to formulate the problem in a grand canonical context, by associating 
a fugacity, K ,  to each bond of the animal, and averaging for unconstrained n. The 
grand canonical radius of gyration thus becomes 

t 2 ( K )  = E  cnRtKn 
n 

On the basis of ( 1 )  and (2) one also obtains 

( (K)  - (K,-K)-”, 
k- k, 

(3) 

(4) 

with K , =  A-‘. 

the new correlation length becomes 
The idea of the renormalisation group is to rescale the system by a factor 1, so that 

((K’) = I-%(K), ( 5 )  

where K‘  = K {( K )  is a regular function of K. If, as in the cases we consider, the 
renormalisation transformation involves only one parameter, ( 5 )  holds, for K d K,, 
only for the leading singular part of ( (K),  given by (4). From ( 5 )  and the assumed 
regularity of Ki(K),  we find that K, must be a solution of the fixed point equation 
K i ( K , ) =  K,, and I”“ is given by (dKi/dK),=,=. 

The existing methods for obtaining K; (K)  in geometrical problems are rather 
empirical and based on very qualitative arguments (de Queiroz and Chaves 1980, 
Stanley er a1 1982). For branched polymers we will essentially follow here the approach 
of Family (1980). The idea is to partition the lattice into cubic cells of side I (figure 
1 )  and to consider a generating function 

K I ( K ) = Z  KIA’, 
A 

where the sum is over all animals A (with IAl bonds) in a given cell, which contain a 
point of the boundary (e.g. the comer C) and go across the cell at least in one given 
lattice direction. 

One expects that K i( K ) ,  considered as. the bond fugacity of a rescaled system, will 
preserve the long range two-point connectivity of the original system, and satisfy ( 5 )  
with the aforementioned consequences. 

We can also give an heuristic argument, based on the concept of fractal dimension 
(Mandelbrot 1982), supporting the fact that the exponent associated with the fixed 
point of the mapping, is indeed v. It is straightforward to show that 

dKi /dK = (K;/K)(lAl)h (7) 
where (/AI)[ is the average obtained from the generating function (6). Because of the 
last equation, if K, is a fixed point of K’=KI(K) ,  it must also be dK’/dKI,-Z’’“. 
Indeed I / v  is the Hausdorf€ dimension of our random fractals: this means that, for 
K S K,, the random animals contributing to ( 6 ) ,  which by construction extend over a 
distance I ,  will have ([AI), - I””. 
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Figure 1. 2 x 2  cell in the square lattice. The con- 
tinuous links belong to the cell, the broken ones to 
the neighbouring cells. 

Figure 2. Anisotropic cell in d = 3 (continuous links) 
corresponding to a rescaling factor 1 = 4 in the longi- 
tudinal direction. 

The computation of ( 6 )  for a 2 x 2  cell (see figure 1) already implies a total of 73 

Indeed, summing over all animals which contain the lower-left corner (C) and go 
contributing animals. 

across the cell, e.g. horizontally, one gets (Family 1980) 

K;(K) = K 2 + 4 K 3 +  14K4+24K5+21K6+8K7+ K8, (8) 

which leads to K, = 0.270 and Y = 0.57, to be compared with K, = 0.192 and v = 0.61, 
as estimated by series expansions analysis (Gaunt 1980), and field theoretical arguments 
(Parisi and Sourlas 1981), respectively. 

To obtain recursion equations for generic d and 1 is obviously very difficult. The 
strategy we propose for overcoming this difficulty is to rescale the lattice successively, 
one direction at a time, using the anisotropic cell shown in figure 2 for d = 3. 

The rule for renormalising the fugacity K is essentially the same as the one used 
for obtaining (8) in the isotropic case; now however, we obtain different recursions, 
according to whether the renormalised bond considered is perpendicular ( K  L) or 
parallel ( K  1,) to the rescaling direction. 

Summing over all animals which contain C and cross the cell longitudinally, we 
get, for general d and I ,  

Kk = K'(  1 + K)D('-I) (9) 

where D = d - 1. In this last equation we exclude animals containing any transverse 
bond at the origin: this ensures that, for 1 = 1, Kl( = K ,  as it should. 

The expression for K :  is slightly more complicated. Considering one of the D 
transverse directions, we sum over all animals which contain C and cross the cell in 
that direction, with at least one bond. Also in this case, to ensure that the transformation 
is identical for I = 1, we have to exclude the D - 1 bonds at the origin, parallel to the 
other transverse directions ; furthermore we prevent the possibility of a full longitudinal 
connection, by excluding the longitudinal bond most remote from C .  

Using these rules we obtain 
D-l I K:= [ K ( 1 + K ) D]' - 1 ( l + K ) -  [ K ( l + K )  

=R,(K) .  K (  1 1 K (  1 + K ) ~ - '  - 1 

For d = 1 only Kii exists and equation (9) gives the correct results: K,  = 1 and v = 1. 
For d > 1 we choose to work still with an isotropic fugacity and take as renormalised 
K '  the result of applying to the original fugacity transformations (10) and (9) D and 
one times, respectivelyt. This is certainly a source of further approximation in the 

t It turns out that the actual order in which the transformations are applied does not very sensitively affect 
the results. 
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method, because it amounts to disregarding the anisotropies generated at each success- 
ive rescaling. We can however reasonably hope that this approximation will not be 
too crude, at least for low d, as previous experience with other geometrical problems 
has shown (Maritan and Stella 1984a, b). We thus choose as renormalised fugacity 

K ' =  [Ry(K)]'[l +RP(K)ID"-" 

In table 1 we report the fixed points and v exponents of ( 1  1 )  for 1 = 2 ,3  and 2 s d s 8. 
Results for different 1 values are slightly different?. It should be noted that K, and 
v for d = 2 are very close to the results of (8). This indicates that our anisotropic 
rescalings do not introduce too heavy approximations. Independent estimates of K,  
for lattice animals have been obtained from series analysis and are reported in table 
1. Our estimates are systematically above the series one. 

Table 1. The results for rescalings 2 and 3 are reported in the first and second row, 
respectively. In the third row results are reported from series and a conjectured relation 
between 0 and U exponents. In the last row the FIory values of P are reported. 

d 2 3 4 5 6 7 8 

1=2  K ,  0.269 0.144 0.0959 0.0714 0.0567 0.0469 0.0399 
U 0.58 0.46 0.39 0.35 0.32 0.30 0.29 

U 0.61 0.48 0.42 0.38 0.36 0.34 0.32 

K c  0.192' 0.0942" 0.0613* 0.0452" 0.0360' 0.0301" 0.0256a 
U 0.6Ib O S O b  0.45' 0.40' 0.32' 0.28' 0.25* 

1 = 3  K ,  0.263 0.140 0.0936 0.0698 0.0555 0.0459 0.0392 

Flow value 0.62 0.50 0.42 0.36 0.3 I 0.28 0.25 

a Gaunt (1980), Parisi and Sourlas (1981), Family (1982), Isaacson and Lubensky (1979). 

As far as the v exponent is concerned, information is available either on the basis 
of the Flory approximation, or of series estimates (Gaunt 1980) of the entropic 6 
exponent (Parisi and Sourlas 198 1, Family 1982) (see table 1). The Flory approximation 
(Isaacson and Lubensky 1980) gives 

v = 5/[2(d +2)] d c 8  
.=I 4, d > 8 .  

An upper critical dimensionality d, = 8 with v = 4 is also predicted on the basis of field 
theoretical techniques (Isaacson and Lubensky 1979). 

Our renormalisation group results compare rather nicely, even if qualitatively, with 
Flory and series values over all the range of dimensionalities considered. For high 
values of d the decrease of v is rather slow. Of course a real space calculation like 
ours cannot produce a v exponent which stays constant above the critical dimension, 
d, = 8, of the problem (Isaacson and Lubensky 1979). 

The above results are rather remarkable for such a relatively simple recursion 
scheme. 

t A  systematic improvement of the results is not to be expected for increasing l, because the effect of 
anisotropies becomes stronger. 
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An important advantage of (1 1) is that, unlike (12), it allows us to gain insight into 

Considering a rescaling 1 = 1 + 6, as customary in such a type of renormalisation 
the problem for d close to its lower critical value, i.e. d = 1. 

calculations, and d = 1 + E, one gets, after some algebra, 

from which we obtain v = 1 - E ,  and K ,  = 1 - 2 ~ .  These results, which are certainly 
exact for E = 0, have a reasonable chance of being correct also to first order in E, as 
similar ones obtained for percolation and self-avoiding walks (SAWS) (Redner and 
Reynolds 1981, Maritan and Stella 1984a, b). For SAWS one obtains v = 1 - ; e :  SO, to 
first order in E, lattice animals are space filling, whereas SAWS have a fractal dimension 
lower than the euclidean one. 

In view of its relative simplicity, one is naturally tempted to extend the above 
renormalisation scheme to the kinetic case. One can conceive an aggregation process 
in which our animals grow by attaching bonds (one at a time) randomly to lattice links 
adjacent to the already occupied ones. This is a bond analogue of the more familiar 
Eden model, in which site aggregation occurs (Eden 1961). Even if the conjecture 
that these two dynamical models belong to the same universality class appears rather 
plausible, this is not strictly guaranteed, a priori. 

In the dynamical case the computations are analogous to those described above 
(Gould et al 1983). The only difference is that now each animal contributing to the 
static recursion, has a multiplicity 2 1 , which accounts for the several different ways in 
which it can be grown starting from C. 

Without entering into further details, we just give the formulae for 1 = 2  and 
general d t 

K ( i = K 2  p=o  ( r ) ( p + l ) ! K p  

Following the previous procedure we computed the values of v for the kinetic animals. 
For d = 2 we get v = 0.54, which implies a fractal dimension, 1/ v, very close to d 

itself. 
It should be noticed that for the Eden model the v exponent is also found to be 

close to f for d = 2 (Peters et a1 1979). This result could support the hypothesis that 
our model and the Eden one belong indeed to the same universality class. We must 
however mention the fact that, on the basis of (14) and (15), the v exponents in higher 
d turn out to be definitely above those conjectured for the Eden model ( v  = l / d )  
(Peters et a1 1979). In particular we find v = 0.42 and 0.35 in d = 3 and 4, respectively, 
while v is close to 2 for d close to 8, as is expected for static animals. 

Of course we cannot exclude the fact that the discrepancy between what is expected 
for the Eden model and the results for our model could be due to an inadequacy of 
our approximations in the dynamics. 

In summary we have presented new renormalisation recursions both for static and 
kinetic bond lattice animals. At least for the static case, our approach appears extremely 

t In the dynamical case we were not able to obtain recursions in closed form for general I and d simul- 
taneously. 
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powerful and allows us to gain new insight into the behaviour close to the lower critical 
dimension, d = 1. 

Further investigation will be needed to test the validity of the approach in the 
kinetic case, especially for high dimensionality. 
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